

M310x Series PECL/LVDS/CML VCXO

Featuring *QiK Chip™* Technology

Features:

- Superior Jitter Performance (comparable to SAW based)
- Frequencies from 150 MHz to 1.4 GHz
- Designed for a short 2 week cycle time

Phase Lock Loop Applications:

- Telecommunications such as SONET / SDH / DWDM / FEC / SERDES / OC-3 thru OC-192
- Wireless base stations / WLAN / Gigabit Ethernet
- Avionic flight controls and military communications

MtronPTI

Corporate Headquarters 100 Douglas Avenue PO Box 630 Yankton, SD 57078-0630 1-800-762-8800 www.mtronpti.com

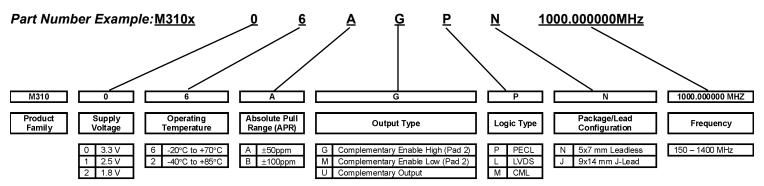
M310x Series

PECL/LVDS/CML Voltage Controlled Crystal Oscillator - 3.3/2.5/1.8 Volt - 5x7 mm

Product Specifications

Product Features:

- Superior Jitter Performance comparable to SAW-based VCSO products (0.50 pS typical at 622.08 MHz)
- Frequencies from 150.0000MHz to 1.4000GHz
- APR (Absolute Pull Range) of ±50 or ±100ppm over industrial temperature range
- Crystal resonator based product offering far better Stability than SAW
- Designed for Short Cycle Time manufacturing (2 weeks or less)
- 0.01 μF bypass capacitor from Vcc to ground built into the 5x7 mm package


Description:

The M310x series voltage controlled crystal oscillator is designed specifically for high performance PLL applications. The M310x is available in PECL, LVDS, and CML output while featuring MtronPTI's QiK $Chip^{TM}$ Technology offering significantly reduced cycle time.

Applications:

- Telecommunications such as SONET / SDH / DWDM / FEC / SERDES / OC-3 thru OC-192
- Wireless base stations / WLAN / Gigabit Ethernet
- Avionic flight controls and communications
- Test Equipment and Instrumentation

Ordering Information:

Part Number Example: M31006ABPN - 1000.000000 MHz

Applications Note:

The MtronPTI M310x series of voltage controlled cystal oscillators, featuring *QiK Chip™* technology, provides for extremely low jitter of 0.50 ps RMS, typical at 622.08 MHz. For applications requiring low jitter, frequencies from 150 MHz to 1.4 GHz are available. LVPECL, LVDS, or CML compatible outputs, as well as operating voltage of 1.8 V, 2.5 V, and 3.3 V are also options on the M310x.

The M310x is available with a standard APR of \pm 50 ppm and \pm 100 ppm, over the industrial operating temperature range of -40°C to +85°C. The M310x achieves this level of performance by utilizing an AT-cut crystal. An enable/disable function is also an available option on the M310x. An internal 0.01 μ F by-pass capacitor also assures optimum noise suppression on the supply voltage pad.

The superior integrated jitter performance of 0.50 pS RMS, typical at 622.08 MHz, makes the M310x suitable for 10 Gig-E, broadband networks, network switches, SONET, SDH, SERDES, DWDM, FEC, WLAN, and OC-3 thru OC-192 systems. The M310x is available in a nine-pad, 5x7x1.9 mm, leadless, ceramic, surface mount package (see page 4, N package drawing) that is RoHS and +260°C reflow compatible, (no PCB traces should be located directly under the 5x7 product). Figures 1 and 2 below show load termination conditions for LVPECL and LVDS. The M310x oscillators are backward compatible to many of the existing products in the industry from Vectron, Epson, and others.

For superior performance in a high frequency clock oscillator, the M310x is a logical choice for designers. The unique design architecture allows the M310x fast turn around on engineering design samples, as well as production quantities in 2 weeks or less.

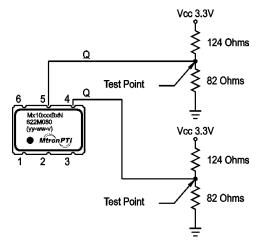


Figure 1. 3.3V LVPECL Load Circuit

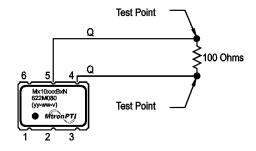
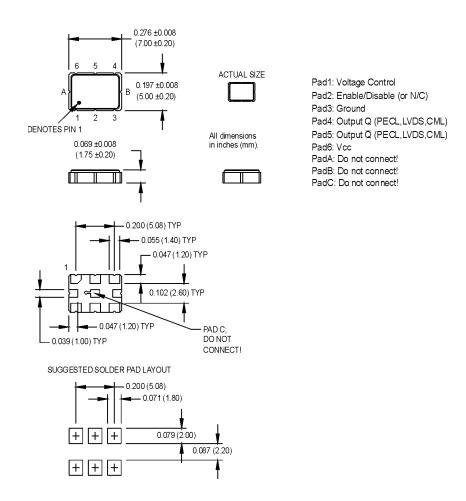


Figure 2. LVDS Load Circuit

Performance Characteristics:

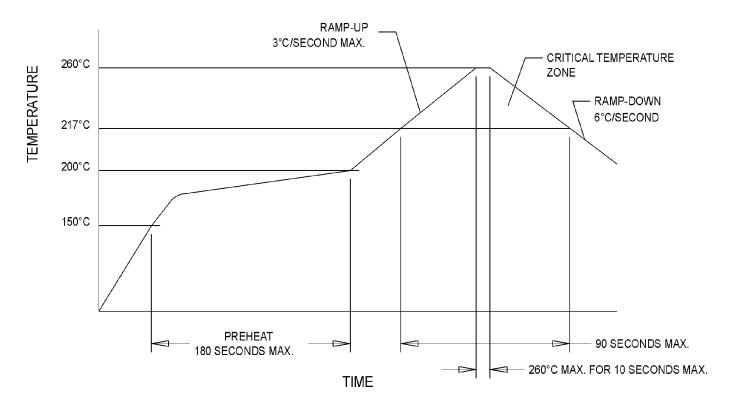

	PARAMETER	Symbol	Min.	Тур.	Max.	Units	Condition/Notes
	Frequency Range	F	150		1400	MHz	See Note 1
	Operating Temperature	TA	(See orderi	ng informa	tion)		
	Storage Temperature	Ts	-55		+125	ů	
	Frequency Stability	∆F/F		±25		ppm	
	Aging 1st Year Thereafter (per year)		-3 -1		+3 +1	ppm ppm	
	Pullability/APR		(See orderi	¥	See Note 2		
	Control Voltage	Vc	0.18 0.25 0.30	0.90 1.25 1.65	1.62 2.25 3.0	V V V	@ 1.8V Vcc @ 2.5V Vcc @ 3.3V Vcc
	Linearity			1	5	%	Positive Monotonic
	Modulation Bandwidth	fm	20			KHz	-3 dB bandwidth
2	Input Impedance	Zin	500k	1M		Ohms	@ DC
ior	Supply Voltage	Vcc	1.71	1.8	1.89	V	
cat			2.375	2.5	2.625	V	
Specifications			3.135	3.3	3.465	V	
ρe	Input Current	lcc			125	mA	PECL/LVDS/CML
Electrical S	Load		50 Ohms to 100 Ohm d		See Note 3 PECL Waveform LVDS/CML Waveform		
<u>je</u>	Symmetry (Duty Cycle)		45		55	%	@ 50% of waveform
۳	Output Skew			TBD			
	Differential Voltage		350	425 TBD	500	mVppd	LVDS CML
	Common Mode Output Voltage	Vcm		1.2		V	LVDS
	Logic "1" Level	Voh	Vcc -1.02			V	LVPECL
	Logic "0" Level	Vol			Vcc -1.63	٧	LVPECL
	Rise/Fall Time	Tr/Tf		0.23	0.50	ns	@ 20/80% LVPECL
	Enable Function		80% Vcc m 20% Vcc m	ax: output	Output Option G		
			20% Vcc m 80% Vcc m	in: output d	Output Option M		
	Start up Time			10	↓	ms	
	Phase Jitter @ 622.08 MHz	фЈ		0.50		ps RMS	Integrated 12 kHz – 20 MHz

Note 1: Contact factory for exact frequency availability over 945 MHz.

Note 2: APR specification is inclusive of initial tolerance, deviation over temperature, shock, vibration, supply voltage, and aging for one year at 50°C mean ambient temperature.

Note 3: See Load Circuit Diagram in this Datasheet. Consult factory with nonstandard output load requirements.

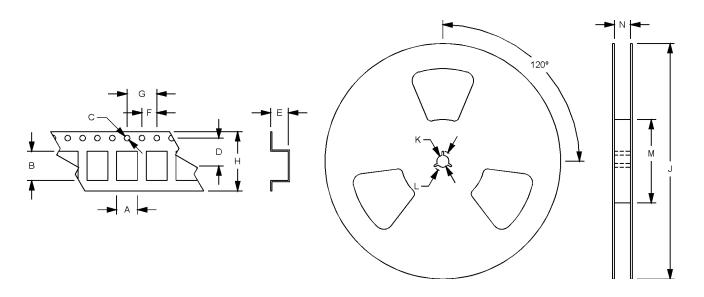
Product Dimensions & Pinout Information:

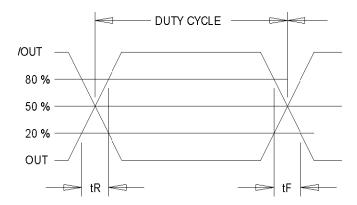

Handling Information:

Although protection circuitry has been designed into the M310 VCXO, proper precautions should be taken to avoid exposure to electrostatic discharge (ESD) during handling and mounting. MtronPTI utilizes a human-body model (HBM) and a charged-device model (CDM) for ESD-susceptibility testing and protection design evaluation. ESD voltage thresholds are dependent on the circuit parameters used to define the mode. Although no industry-wide standard has been adopted for the CDM, a standard HBM (resistance = 1500, capacitance = 100 pF) is widely used and therefore can be used for comparison purposes. The HBM ESD threshold presented here was obtained using these circuit parameters.

Model	ESD Threshold, Minimum	Unit
Human Body	1500*	V
Charged Device	1500*	V

* MIL-STD-833D, Method 3015, Class 1


Solder Profile:


Quality Parameters:

Environmental Specifications/Qualification Testing Performed on the M310 VCXO								
Test	Test Method	Test Condition						
Electrical Characteristics	Internal Specification	Per Specification						
Frequency vs. Temperature	Internal Specification	Per Specification						
Mechanical Shock	MIL-STD-202, Method 213, C	100 g's						
Vibration	MIL-STD-202, Method 201-204	10 g's from 10-2000 Hz						
Thermal Cycle	MIL-STD-883, Method 1010, B	-55 Deg. C to +125 Deg. C, 15 minute Dwell, 10 cycles						
Aging	Internal Specification	168 Hours at 105 Degrees C						
Gross Leak	MIL-STD-202, Method 112	30 Second Immersion						
Fine Leak	MIL-STD-202, Method 112	Must meet 1x10 ⁻⁸						
Solderability	MIL-STD-883, Method 2003	8 Hour Steam Age – Must Exhibit 95% coverage						
Resistance to Solvents	MIL-STD-883, Method 2015	Three 1 minute soaks						
Terminal Pull	MIL-STD-883, Method 2004, A	2 Pounds						
Lead Bend	MIL-STD-883, Method 2004, B1	1 Bending Cycle						
Physical Dimensions	MIL-STD-883, Method 2016	Per Specification						
Internal Visual	Internal Specification	Per Internal Specification						

Tape and Reel Specifications:

Product	Α	В	С	D	Е	F	G	Н	I	J	K	٦
M310x	6.51	9.29	1.5	7.5	2.8	4	8/12	16	180-330	13	21	60-100

Output Waveform: LVDS/CML/PECL

Yankton

PO Box 630 Yankton, SD 57078-0630 USA Phone: 605-665-9321 Toll Free: 800-762-8800 Fax: 605-665-1709

Email: SalesYKT@mtronpti.com

<u>Orlando</u>

2525 Shader Rd Orlando, FL 32804 USA Phone: 407-298-2000 Fax: 407-293-2979 Email: SalesORL@mtronpti.com

Connecticut

755 Main Street Suite 2B, Building 2 Monroe, CT 06470 USA Phone: 800.762.8800 Fax: 203.452.9435

Email: MilSales@mtronpti.com

San Jose

985 University Ave
Suite 38
Los Gatos, CA 95032 USA
Phone: 408-395-0700
Fax: 408-395-8074
Email: SalesCA@mtronpti.com

Europe

The Netherlands
Phone: 31-40-368-6818
Fax: 011-31-40-368-3501
Email: SalesEU@mtronpti.com

1104 Shanghai Industrial Investment Building 48-62 Hennessy Road Wanchai, Hong Kong, China Phone: 852-2866-8023 Fax: 852-2529-1822

Email: SalesHK@mtronpti.com

Asia Pacific